APP APP OUCK GUDE Battery Pack Bluetooth

Content

1	APP summary	01
1.1	Brief introduction	01
1.2	Function	01
2	Operating environment	01
3	Usage method	02
3.1	Software installation	02
3.2	Software operation	02

3.2.1	Overall interface	02
3.2.2	Interface operation	03
3.2.3	Interface instruction	03
4	Setting parameter modification	04
5	App errors and Solutions	25

1. Overview

1.1 Brief introduction

The Bluetooth APP could realize the real-time monitoring of battery pack and make it easy to learn the battery health status.

1.2 Function

See information

SOC, Current, Battery Voltage, Remaining capacity, Status of battery,

Cell Voltage, Protection record, Real-time charge and discharge status curve, Temperature, Cycle time, Log, Sound alarm and Fault information, etc.

Parameter Settings

2.Operating environment

Android or IOS is all available.

3.Use Manual

3.1 Install

Android mobile phone users can search "RAMCAR BT Li" in Google Mall to download and install.

Apple mobile phone users can search "RAMCAR BT Li" in Appstore to download and install.

3.2 Software operation

3.2.1 Overall interface

3.2.2 Interface operation

After download, turn on the Bluetooth of the mobile phone and click for enter. Enter Pre-interface, after 3S pause, automatically enter page 1. You can switch to other pages through clicking the menu bar at the bottom of the interface.

3.2.3 Interface Introduction

14. Setting parameter modification

4.1 Basic setting

Series Num ----- 4 series

Battery Pack Bluetooth **APP QUICK GUIDE**

4.2 Sleep function

 Sleep function 		
Sleep function	Ð	0
VNor	4200	mv
TNor	10800	Min
VLow	3000	mv
TLow	1	Min
VirCurChg	0.0	A
VirCurDsg	0.0	А
RTC_WT	240	Min

- Sleep voltage under normal condition VNor:
- TNor: Sleep time under normal condition
- Sleep voltage under low voltage condition VLow:
- Sleep time under low voltage condition TLow:
- VirCurChg: Charging current filtering
- VirCurDsg: Discharge current filtration

RTC-WT: RTC wake up time

Analysis of the above parameters:

- When the voltage range of single series is 2900-4200mv and the charge&discharge current is less than 1a, it will enter sleep after 10800min;
- · When the voltage range of single string is less than 2900mv and the charge discharge current is less than 1a, it will go into sleep after 1min;
- · Every 240Min, the protection board will automatically wake up to scan whether it is still in static state. If yes, it will continue to sleep.

4.3 Heating Function

 Heating function 		<
Heating function	۲	
HeatDsg_High	0.0	°C
HeatDsg_Mid	10.0	°C
HeatDsg_Low	10.0	°C
HeatChg_High	70.0	°C
HeatChg_Mid	60.0	°C
HeatChg_Low	-40.0	°C
HeatCur_Max	0.0	A
HeatCur_Min	0.0	A
HeatTime	0	Min

This function has not been opened.

4.4 Cooling Function

 Cooling function 			
Cooling func	tion	۲	
CoolDsg_Hig	Jh	-40.0	°C
CoolDsg_Lov	N	-40.0	°C
CoolChg_Hig	Jh	-40.0	°C
CoolChg_Lov	N	-40.0	°C
CoolCur_Max	×	0.0	А
CoolCur_Min		0.0	А
CoolTime		0	Min

This function has not been opened.

4.5 Balancing function

 Balancing function 		
Balancing function	۲	0
Bn_OpenV	3300	mv
Bn_OpenW	30	mv
Bn_CloseW1	20	mv
Bn_CloseW2	0	mv
Bn_TimeOdd	0	Se
Bn_TimeEven	0	Se
Bn_TimeMos	0	Se

- Bn-OpenV: Voltage for open Balance
- Bn-OpenW: Voltage differential for open balance
- Bn-CloseW1: Balance close condition 1
- Bn-CloseW2: Balance close condition 2
- Bn-TimeOdd: Even serial time slice
- Bn-TimeEven: Odd serial time slice

Dif fillelven. Oud send tille silee

Bn-TimeMos: MOS time slice

Analysis:

The condictios to open balance:

A、When the "single section maximum voltage" is higher than the "open voltage", balance begins;

B、When the "voltage differential between cells" is higher than the "open voltage differential", the balance begins

The condictions to close balance:

The balance started by the above condition A, when the voltage differential is less than "Bn-CloseW1", the balance stops.

The balance started by the above condition B, when the voltage differential is less than "Bn-CloseW2", the balance stops.

Balance time:

Odd series time slice and even series time slice

Due to the hardware limitation, it is impossible to balance all cells at the same time. Only the odd string can be balanced for a period of time, then the even serial can be balanced for a period of time, and then the odd serial can be balanced again.....;

MOS time slice

Due to different customer needs, there are two strategies:

Forbid charging/discharging during balancing - when using this strategy, balance and charging & discharging are carried out alternately, that is, after balancing for a period of time, charging /discharging are allowed for a period of time, and then balance for a period of time again...

Balance and charging/discharging can be carried out simultaneously - when using this strategy, "MOS time slice" must be set to 0.

4.6 OV-Cell (Overcharge parameter setting of single string cell)

- **First level OV-Cell -** First-level warning of Battery string overvoltage. When the maximum single serial voltage exceeds the critical value, the first-level warning will be generated;
- **Second level OV-Cell** Secondary warning of battery string overvoltage. When the maximum single string voltage exceeds the critical value, the secondary warning will be generated;
- Third level OV-Cell Third-level warning of battery string overvoltage.

When the maximum single string voltage exceeds the critical value, the third-level warning will be generated.

Recovery point OV-Cell - Recovery point of battery string overvoltage protection.

After the battery string overvoltage protection is generated, when the maximum voltage of the battery string is lower than the value, the over-voltage protection of the battery string will be turned off;

Delay point OV-Cell - After exceeding the critical value, delay for a certain time, and then trigger the protection (or generate a warning). This function is to prevent misoperation caused by abrupt peak signal.

4.7 UV-Cell (Over discharge parameter setting of single string cell)

- **First level UV-Cell -** First-level warning of Battery string undervoltage. When the maximum single serial voltage lower than the critical value, the first-level warning of battery string undervoltage will be generated;
- Second level UV-Cell Secondary warning of battery string undervoltage.
 When the maximum single string voltage of battery string is lower than the critical value, the secondary warning of under voltage of battery string will be generated;
- Third level UV-Cell Third-level warning of battery string undervoltage.
 When the maximum single string voltage of battery string is lower than the critical value, the third-level warning of under voltage of battery string will be generated;
- Recovery point UV-Cell Recovery point of battery string undervoltage protection. After the battery string overvoltage protection is generated, when the maximum voltage of the battery string is higher than the value, the under-voltage protection of the battery string will be turned off.
 - **Delay point UV-Cell** When it is lower than the critical value, it will delay for a certain time, and then trigger the protection (or generate a warning). This function is to prevent misoperation caused by abrupt wave crest signal;

4.8 OV-Bat (Total voltage overcharge parameters setting of battery pack)

- **First level OV-Bat** First-level warning of Battery pack overvoltage. When the total voltage of the battery exceeds the critical value, the first-level warning of battery pack over-voltage will be generated;
- **Second level OV-Bat** Secondary warning of Battery pack overvoltage. When the total voltage of the battery exceeds the critical value, the secondary warning of battery pack over-voltage will be generated;
 - Third level OV-Bat Third-level warning of Battery pack overvoltage.

When the total voltage of the battery exceeds the critical value, the third-level warning of battery pack over-voltage will be generated;

Recovery point OV-Bat - Recovery point of battery pack overvoltage protection.

After the battery pack overvoltage protection is generated, when the total voltage of the battery pack is lower than the value, the over-voltage pro-tection of the battery pack will be turned off.

Delay point OV-Bat - After exceeding the critical value, delay for a certain time, and then trigger the protection (or generate a warning). This function is to prevent misoperation caused by abrupt peak signal;

4.9 UV-Bat (Parameter setting of battery pack under-voltage)

- **First level UV-Bat** First-level warning of Battery pack undervoltage. When the total voltage of the battery pack is lower than the critical value, the first-level warning of battery pack under-voltage will be generated;
- **Second level UV-Bat** Secondary warning of Battery pack undervoltage. When the total voltage of the battery pack is lower than the critical value, the secondary warning of battery pack under-voltage will be generated;
- Third level UV-Bat Third-level warning of Battery pack undervoltage.

When the total voltage of the battery pack is lower than the critical value, the third-level warning of battery pack under-voltage will be generated;

Recovery point UV-Bat - Recovery point of battery pack overvoltage pro-tection.

After the battery pack under-voltage protection is generated, it will be turned off when the total voltage recovers to above the value;

Delay point UV-Bat - After exceeding the critical value, delay for a certain time, and then trigger the protection (or generate a warning). This function is to prevent misoperation caused by abrupt peak signal;

4.10 OC-Chg (Charging over-current protection parameters)

- OC_Chg			
Frist levelOC_Chg	80.0	А	۲
Second levelOC_C	100.0	A	
Third levelOC_Chg	110.0	А	
Recovery pointOC	100.0	А	
Delay pointOC_Chg	100	10ms	

- **First level OC-Chg -** First-level warning of Battery charging over-current. When the charging current of battery exceeds the critical value, the first-level warning of Battery charging over-current will be generated;
- **Second level OC-Chg** Secondary warning of Battery charging over-current. When the charging current of battery exceeds the critical value, the secondary warning of Battery charging over-current will be generated;
- Third level OC-Chg Third-level warning of Battery charging over-cur-

rent. When the charging current of battery exceeds the critical value, thethird-level warning of Battery charging over-current will be generated;

Recovery point OC-Chg - Recovery point of battery charging over current protection.

When the charging current is lower than this value, the battery charging over-current protection will be turned off.

Delay point OC-Chg - After exceeding the critical value, delay a certain time, and then trigger the protection (or generate a warning). This function is to prevent misoperation caused by sudden wave crest signal;

4.11 OC-DSg (Discharging over-current protection parameters)

 OC_Dsg 	
Frist levelOC_Dsg	700.0 A 📀
Second levelOC_D	750.0 A
Third levelOC_Dsg	800.0 A
Recovery pointOC	750.0 A
Delay pointOC_Dsg	300 10ms

First level OC-Dsg - First-level warning of Battery discharging over-current. When the discharging current of battery exceeds the critical value, the first-level warning of discharging over-current will be generated;

Second level OC-Dsg - Secondary warning of Battery discharging over-current. When the discharging current of battery exceeds the critical value, the secondary level warning of discharging over-current will be generated;

Third level OC-Dsg - Third-level warning of Battery discharging over-cur-

rent. When the discharging current of battery exceeds the critical value, the third-level warning of discharging over-current will be generated;

Recovery point OC-Dsg - Recovery point of battery discharging over current protection.

When the discharging current is lower than this value, the battery charging over-current protection will be turned off.

Delay point OC-Dsg - After exceeding the critical value, delay a certain time, and then trigger the protection (or generate a warning). This function is to prevent misoperation caused by sudden wave crest signal;

4.12 OT-Chg (Charging over temperature protection parameters)

✓ OT_Chg			
Frist levelOT_Chg	50.0	°C	٢
Second levelOT_Chg	50.0	°C	
Third levelOT_Chg	65.0	°C	
Recovery pointOT	50.0	°C	
Delay pointOT_Chg	100	10ms	

- **First level OT-Chg** First-level warning of Battery charging over temperature. When the temperature of battery exceeds the critical value during charging, the first-level warning of Battery charging over temperature will be generated;
- **Second level OT-Chg** Secondary warning of Battery charging over temperature. When the temperature of battery exceeds the critical value during charging, the secondary warning of Battery charging over temperature will be generated.

Third level OT-Chg - Third-level warning of Battery charging over temperature. When the temperature of battery exceeds the critical value during charging, the third-level warning of Battery charging over temperature will be generated.

Recovery point OT-Chg - Recovery point of battery charging over temperature protection.

When the temperature is lower than this value during charging, the battery charging over temperature protection will be turned off;

Delay point OT-Chg - After exceeding the critical value, delay for a certain time, and then trigger the protection (or generate a warning). This function is to prevent misoperation caused by abrupt peak signal.

4.13 UT-Chg (Charging low temperature protection parameters)

✓ UT_Chg			
Frist levelUT_Chg	5.0	°C	۲
Second levelUT_Chg	2.0	°C	
Third levelUT_Chg	-2.0	°C	
Recovery pointUT	0.0	°C	
Delay pointUT_Chg	100	10ms	

- **First level UT-Chg** First-level warning of Battery charging low-temperature.When the temperature of battery is lower than the critical value during charging, the first-level warning of Battery charging low-temperature will be generated;
- **Second level UT-Chg** Secondary warning of Battery charging low-temperature. When the temperature of battery is lower than the critical value during charging, the secondary warning of Battery charging low-temperature will be generated;

Third level UT-Chg - Third-level warning of Battery charging low-temperature. When the temperature of battery is lower than the critical value during charging, the third-level warning of Battery charging low-temperature will be generated;

Recovery point UT-Chg - Recovery point of battery charging low-temperature protection.

When the temperature exceeds this value during charging, the low temperature protection of battery charging will be turned off;

Delay point UT-Chg - When it is lower than the critical value, it will delay for a certain time, and then trigger the protection (or generate a warning). This function is to prevent misoperation caused by abrupt wave crest signal;

4.14 OT-DSg (Discharging over-temperature protection parameters)

 OT_Dsg 	
Frist levelOT_Dsg	50.0 °C 📀
Second levelOT_Dsg	50.0 °C
Third levelOT_Dsg	65.0 °C
Recovery pointOT	55.0 °C
Delay pointOT_Dsg	100 10ms

- **First level OT-Dsg -** First-level warning of Battery discharging over temperature. When the temperature of battery exceeds the critical value during charging, the first-level warning of Battery discharging over temperature will be generated;
- **Second level OT-Dsg** Secondary warning of Battery discharging over temperature. When the temperature of battery exceeds the critical value during charging, the secondary warning of Battery discharging over temperature will be generated;

Third level OT-Dsg - Third-level warning of Battery discharging over temperature. When the temperature of battery exceeds the critical value during charging, the third-level warning of Battery discharging over temperature will be generated;

Recovery point OT-Dsg - Recovery point of battery discharging over temperature protection.

When the temperature is lower than the value during charging, the battery discharging over temperature protection will be turned off;

Delay point OT-Dsg - After exceeding the critical value, delay for a certain time, and then trigger the protection (or generate a warning). This function is to prevent misoperation caused by abrupt peak signal.

4.15 UT-DSg (Discharging low temperature protection parameters)

✓ UT_Dsg			
Frist levelUT_Dsg	-10.0	°C	۲
Second levelUT_Dsg	-10.0	°C	
Third levelUT_Dsg	-20.0	°C	
Recovery pointUT	-10.0	°C	
Delay pointUT_Dsg	100	10ms	
Delay pointUT_Dsg	100	10ms	

- **First level UT-Dsg** First-level warning of Battery discharging low-temperature.When the temperature of battery is lower than the critical value during charging, the first-level warning of Battery discharging low-temperature will be generated;
- **Second level UT-Dsg** Secondary warning of Battery discharging low-temperature.When the temperature of battery is lower than the critical value during charging, the secondary warning of Battery discharging low-temperature will be generated;

Third level UT-Dsg - Third-level warning of Battery discharging low-temperature.When the temperature of battery is lower than the critical value during charging, the third-level warning of Battery discharging low-temperature will be generated;

Recovery point UT-Dsg - Recovery point of battery discharging low-temperature protection.

When the temperature exceeds this value during discharging, the low temperature protection of battery charging will be turned off;

Delay point UT-Dsg - When it is lower than the critical value, it will delay for a certain time, and then trigger the protection (or generate a warning). This function is to prevent misoperation caused by abrupt wave crest signal.

4.16 OT-MOS (MOS Over temperature protection parameters)

▼ OT_MOS	
Frist levelOT_MOS	60.0 °C 📀
Second levelOT_M	70.0 °C
Third levelOT_MOS	85.0 °C
Recovery pointOT	80.0 °C
Delay pointOT_MOS	100 10ms

- **First level OT-MOS** First-level warning of MOS over temperture. When the MOS temperature exceeds the critical value during battery charging/discharging, the first-evel warning of MOS over temperture will be generated;
- **Second level OT-MOS** Secondary warning of MOS over temperture. When the MOS temperature exceeds the critical value during battery charging/discharging, the secondary warning of MOS over temperture will be generated;

Third level OT-MOS - Third-level warning of MOS over temperture. When the MOS temperature exceeds the critical value during battery charging/discharging, the third-level warning of MOS over temperture will be generated;

Recovery point OT-MOS - Recovery point of MOS over temperature protection during charging/ discharging.When the MOS temperature is lower than this value, the MOS over temperature protection will be turned off;

Delay point OT-MOS - After exceeding the critical value, delay for a certain time, and then trigger the protection (or generate a warning). This function is to prevent misoperation caused by abrupt peak signal;

4.17 Pressure difference is too large

 Pressure difference is too large 			
Frist levelPressure	1000	mv	۲
Second levelPress	1000	mv	
Third levelPressure	1000	mv	
Recovery pointPre	900	mv	
Delay pointPressur	100	10ms	

- **First level Pressure -** First-level warning of battery voltage differential When the battery voltage differential exceeds the critical value, the first -level warning of battery voltage differential will be generated;
- **Second level Pressure -** Secondary warning of battery voltage differential.When the battery voltage differential exceeds the critical value, the secondary warning of battery voltage differential will be generated;

Third level Pressure - Third-level warning of battery voltage differen-

tial.When the battery voltage differential exceeds the critical value, the third-level warning of battery voltage differential will be generated;

- **Recovery point Pressure -** Recovery point of voltage differential protection.When the battery differential pressure returns below this value, the battery differential pressure protection will be turned off;
- **Delay point Pressure -** After exceeding the critical value, delay for a certain time, and then trigger the protection (or generate a warning). This function is to prevent misoperation caused by abrupt peak signal;

4.18 Low electricity consumption (Low electricity protection parameters)

 Low electricity consul 	mption		
Frist levelLow elect	3	%	٢
Second levelLow el	2	%	
Third levelLow elec	1	%	
Recovery pointLow	2	%	
Delay pointLow ele	100	10ms	

- **First level Low electricity consumption** First-level warning of low electricity. When the battery electricity is lower than the critical value, the First-level warning of low electricity will be generated;
- **Second level Low electricity consumption** Secondary warning of low electricity. When the battery electricity is lower than the critical value, the Secondary warning of low electricity will be generated;
 - Third level Low electricity consumption Third-level warning of low

electricity. When the battery electricity is lower than the critical value, the third-level warning of low electricity will be generated;

- **Recovery point Low electricity consumption** Recovery point of Low electricity alarm. When the battery electricity returns to higher than the value, the low battery electricity alarm will be turned off;
- **Delay point Low electricity consumption** When it is lower than the critical value, it will delay for a certain time, and then trigger a warning. This function is to prevent misoperation caused by abrupt peak signal;

4.19 Short Protection Para (Short circuit protection parameters)

CS_CurCHG(A)	849	А	☯
CS_CurDSG(A)	849	A	
CBC_CurCHG(A)	350	A	
discharge current	800	А	
passW_Once	1		
passW_Forever	0		
Res1	1000		
Res2	30		

CS-CurCHG(A) - Maximum charging current collected by protection board

CS-CurDSG(A) - Maximum discharging current collected by protection board

CBC-CurCHG(A) - Charging short circuit current

Discharge current - Setting of short-circuit protection current, that is, when the short-circuit protection current reaches the set value, BMS turns off the discharge MOS at the set time

PassW-Once - One time password

Input one-time password into the protection board, and the protection board can only be used once!

PassW-Forever - Permanent password

The protection board can only be used permanently if the permanent password is input!

Res1 - Reserve 1

Res2 - Reserve 2

5. App errors and Solutions

APP Error description	Solution
1.ComError_AFE1:	Generally, it is AFE communication fails or chip
The analog front-end 1 (1-15 series) has an	not welded, and it needs to be returned to the
error in the acquisition process.	factory for maintenance
2.ComError_AFE2:	Generally, it is AFE communication fails or chip
The analog front-end 1 (16-30 series) has an	not welded, and it needs to be returned to the
error in the acquisition process.	factory for maintenance
3.ComError_Can:	Generally, the CAN communication fails and
The CAN signal is not received normally, indi-	the code needs to be upgraded or returned to
cating an error	the factory for maintenance

4.ComError_E2P: E2P chip (the function of storing data) is not well soldered or interfered, and an error is reported Generally, it is the IIC communication in EEPROM fails or the chip is not soldered and needs to be returned to the factory for repair

5.ComError_SPI: SPI signal is not received normally, indicating error (the signal is not designed at present)	Reserved: SPI communication is not designed yet
6.ComError_Upper: Communication error of upper computer	Generally, BMS and upper computer have not communicated successfully. Please check the wiring or judge whether the PC terminal has been connected
7.ComError_Client1: Communication error with customer back end	Generally, the communication between BMS and back-end load is not successful. Check the wiring or judge whether the protocol is correct

APP Error description	Solution
8.ComError_Screen: LCD display is abnormal or data is not interworking or data communica-tion error	If the LCD fails to connect, check whether the RX TX is reversely connected, or whether the power on of the LCD is normal
9.ComError_WiFi:WiFi communication error	WiFi module failed to communicate success- fully
10.Bluetooth Device: Bluetooth communication error	Bluetooth module failed to communicate suc- cessfully
11.ComError_APP:APP Communication error	App and BMS communication error, check the wiring or check whether the BMS is in sleep, power off state

	12.Error_CBC_CHG: Charging short circuit pro- tection is triggered (this function is not easily triggered)	Charging short-circuit protection, Generally, it is the current of the charging gun is too high, or there is a relay or a large capaci- tive element inside the gun, and the specific problems need to be modified
	13.Error_StoreE2P: E2P storage error, which is caused by some data setting errors of the soft-ware	To reset other parameters, click, and then rese- lect the correct and reasonable parameters
	14.Error_HSE: Internal crystal oscillator error (crystal oscilla- tor is used for timing)	Ignore, generally use external crystal oscillator
_	15.Error_LSE:External crystal error	Hardware error, return to factory

APP Error description	Solution
16.Error_Flash:Internal flash storage error will cause abnormal data reading	Internal code logic problem, upgrade code
17.Error_ADC:Single chip sampling error, gen- erally for voltage or temperature display ab- normal, common abnormal temperature 105	If the temperature wire is not inserted or inserted tightly, check the wiring or unplug it again
18.Error_HEAT: Heating error	HT is wrong for some reason and needs to check the code logic
19.Error_COOL: Condensation error	Need to check the logic code for some reason

20.Error_CBC_DSG:Triggered discharge short circuit protection (this function is not easily triggered)	Discharge short circuit protection, generally, the discharge current of the load is too large or there is a relay or a large capacitive element inside the load, and the specific problems need to be modified
21.OV_Cell:Single section over voltage error	When the voltage falls back to the recovery point, it will be released automatically
22.UV_Cell:Single undervoltage error	Automatically release when the voltage rises to the recovery point
23.OV_Bat:Total voltage over-voltage error	When the voltage falls back to the recovery point, it will be released automatically

APP Error description	Solution
24.UV_BAT:Total voltage under-voltage error	When the voltage rises to the recovery point, it will be released automatically
25.OC_Chg:Charging over current error report- ing	When the current is less than the recovery point, it will be released automatically
26.OC_Dsg: Discharge over current error	When the current is less than the recovery point, it will be released automatically
27.OT_CHG:Charging over temperature error	It will be released automatically when the tem- perature is lower than the recovery point

29.UT_DSG:Error reporting at low temperature of discharge	When the temperature is higher than the re- covery point, it will be released automatically	
30.Vdelta_OP:Error report for excessive differ- ential voltage	When the volatge differential is less than the recovery point, it will be released automatically	
31.RES: Reserved	Reserved	
32.OT_MOS:MOS Over temperature error		
33.SOC_LOW_P:SOC Low alarm (this will not Ttrigger protection, only alarm)		
34.Balanced_Cnt: The times of trigger balance		

APP QUICK GUIDE

